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Abstract. The commensurate–incommensurate phase transition of a Rb2ZnCl4 crystal was
studied using a conduction calorimeter. By identifying the contribution of the specific heat to the
transition enthalpy it was possible to show, for the first time for a compound of this type, transition
latent heat. This was estimated to be Q = 2.3 J mol−1. The result was compared with theoretical
predictions for a domain wall model having repulsive–attractive interaction; satisfactory results
were obtained for the first time. The same analysis was applied to the normal–incommensurate
phase transition and no latent heat was observed, as expected.

1. Introduction

The study of commensurate–incommensurate phase transitions in crystal systems has been of
major interest for over a decade. It has been theoretically established that in a commensurate–
incommensurate transition, continuity of physical anomalies is maintained independently of
the nature of the system [1–3]. To establish that this phase transition is present, the study must
include the normal–incommensurate phase transition always present at higher temperature.
When this is done, the mathematical framework of the commensurate–incommensurate phase
transition becomes considerably more complicated as shown in references [2] and [4]. The
purpose of this work is to analyse the latent heat in the commensurate–incommensurate phase
transition in Rb2ZnCl4; hence a simpler analysis can serve us, provided that attention be
focused solely on the commensurate–incommensurate transition. Generally, this transition can
be understood from the spontaneous appearance of domain walls in a monodomain structure
(see reference [5]); the force of interaction between domain walls is a determining factor when
describing properties of the transition: if the interaction were purely repulsive, the transition
would be continuous. However, there are always attraction forces in ferroelectric structural
transitions that cause the transition to be discontinuous [6,7]. Within this model the existence
of a well-defined domain wall structure is assumed, although it is, experimentally, hardly
realizable.

Repulsion forces between domain walls are dominant over a wide range of temperatures
above the transition temperature and yield theoretical expressions for the divergences of the
dielectric susceptibility and specific heat, as in reference [2]. Experimentally, the anomaly
of the dielectric constant was analysed within this formalism by Levstik et al [8], who
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ascertained that it diverged from the (T − Tic)
−1 law precisely as set forth theoretically. The

specific heat peak was described as a manifestation of the transition’s discontinuous nature, but
recently [9] proof has been found that its divergence in the incommensurate phase matches,
as well, that which is expected from the repulsion potential. Other properties, such as the
misfit parameter [10–12], or birefringence [13], display certain characteristics implying a
discontinuous transition and indicate that, within a given temperature range approaching the
transition temperature, the presence of attractive forces is not to be discounted. Within this
temperature range, corresponding to the final part of the permittivity peak and specific heat,
predictions within the repulsion model do not hold true [9].

Calorimeter measurements near the transition temperature lead to difficulties in dis-
criminating the enthalpy variation due to latent heat from that owing to the excess specific
heat integral over temperature. This problem becomes more acute in cases where the latent
heat is very small, such as in the commensurate–incommensurate phase transition. Thus,
although the discontinuous character of the transition has been known for over a decade,
calorimetric measurements have not yielded clear evidence of latent heat. On one hand, Atake
et al [14] used the integral of the anomaly of the specific heat in the Clausius–Clapeyron
formula, implicitly assuming that it meant latent heat. On the other, Zhu et al [15] estimated
the latent heat of barium sodium niobate (BSN) from DSC measurements. In neither of the
two instances were the two previously mentioned contributions taken into account.

Nonetheless, theoretical analysis of the phase transition shows that the specific heat must
be subject to an anomaly evinced by a sharp peak, inasmuch as it diverges in accordance with
Curie’s law, with a relatively small constant of proportionality (three–four orders of magnitude
less than the permittivity in the same transition phase). Therefore, the specific heat anomaly
is detectable only within a temperature range nearing Tic (approximately 1 K). In contrast,
estimations from the Clapeyron formula indicate latent heat of the order of a few joules per
mole [16]. In consequence, it becomes necessary to analyse both contributions.

In the present paper a conduction calorimeter has been used which can measure specific
heat and also serves as a DTA apparatus of great sensitivity, inasmuch as the sensor is made
up of 96 thermocouples. The theory set forth previously allows for discrimination between
the two contributions mentioned. This technique was applied in establishing the latent heat
for the commensurate–incommensurate transition in the Rb2ZnCl4 crystal. To cross check the
method, the same procedure was used on the normal–incommensurate phase transition, which
is a continuous transition where the enthalpy variation results solely from the specific heat.

2. Experimental procedure

A purified sample of rubidium tetrachlorozincate (Rb2ZnCl4) was placed in a conduction
calorimeter. The sample has a 289 mg mass (0.764 mmol) with a 25 mm2 cross section and
a width of 3.14 mm along the ferroelectric axis. Above Ti = 305 K the Rb2ZnCl4 single
crystal presents an orthorhombic pseudohexagonal (Pnma) phase; it is paraelectric. At Ti , a
continuous phase transition transforms it into an incommensurate crystal with a modulation
wave vector close to one third of a∗. Finally, at Tic = 195 K, the crystal phase locks into
a commensurate phase which is again orthorhombic (Pna21) but is ferroelectric along the
c-axis and with a triple unit cell [17]. Rb2ZnCl4 has been widely chosen as a test case for the
theoretical description of both the commensurate–incommensurate phase transition and the
normal–incommensurate phase transition.

The conduction calorimeter has been described elsewhere [18]. Briefly, it consists of a
large calorimetric block whose mass makes it a thermal reservoir. Two fluxmeters together
form a set of 96 thermocouples constructed thermally in parallel and electrically in series;
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one junction from the thermocouples is fixed to the block (outer junction) while the other one
is fixed to an anodized silver plane plate which has an electric heater of negligible thermal
capacity. The sample is kept between the two heaters (allowing thermal excitation of the
sample). Special care is taken in conserving the axial symmetry of the assembly. By making a
high vacuum (10−5 mbar) inside the calorimetric vessel and providing it with radiation shields,
the main objective of the assembly is obtained: any heat flux flowing from the block to the
sample must cross the fluxmeters. The heat capacity of the sample is measured by dissipating
the same power in the heaters. When a stationary state is reached, the power is cut off. The
value of the thermal capacity is obtained by integrating the electromotive force given by the
fluxmeters during the relaxation to the equilibrium state [19].

The system can also be used as a differential thermal analyser (DTA) of great sensitivity
when the temperature of the block is modified at a constant rate and no dissipation whatsoever
is applied to the heaters. In such a case, the measured thermoelectromotive force, E, is proport-
ional to the heat flow, φ (the factor being determined previously by calibration), and φ is related
to the sample enthalpy variation.

Theoretically, well away from the transition point the heat flux should be proportional [20]
to the rate of temperature change, and the heat capacity of the sample and its surroundings
(fluxmeters, silver electrode and heaters). That is,

φ0 = (Cs + C0)
dT

dt
. (1)

Here Cs is the sample heat capacity and C0 represents the heat capacity of the surroundings.
This value can be obtained by giving the sample heat capacity and calibrating C0 as we will
show in section 3. The existence of latent heat can be shown by measuring φ and comparing
with φ0. The latent heat will be obtained as

Q =
∫

(φ − φ0) dt (2)

where the integral covers the transition point. We will show that this difference is negligible
for a continuous phase transition, as φ and φ0 match each other. The physical meaning of φ0

is, then, the heat flow which would have been obtained had there been no latent heat.
The Rb2ZnCl4 sample was set in the conduction calorimeter and cooled in the paraelectric

phase to 100 K. Afterwards, the sample was heated at a constant rate of 2 K h−1 to room
temperature whilst the fluxmeter thermoelectromotive force signals were registered as funct-
ions of temperature. The thermoelectromotive force was recorded by a Keithley K182 nano-
voltmeter. At 190 K and 200 K the calorimeter was calibrated [18] in order to convert
the fluxmeter signal into heat flow. A similar experiment was performed near the normal–
incommensurate phase transition.

3. Results

In figure 1, fluxmeter signals near the normal–incommensurate phase are represented by full
circles. In this figure, the thermoelectromotive force has been converted into heat flow and,
then, divided by the sample mole number. The anomaly in the signal is due to variation of the
transition enthalpy. To establish the existence of latent heat, we need to compute the value of
φ0: we proceeded as follows. Let us consider the values of the heat flux and the sample heat
capacity (the latter being measured for the same calorimeter and sample, and shown in the
inset in figure 1) at two temperatures distant from the phase transition point—for example at
302 K and 305 K, where the measured φ should be equal to φ0. From equation (1), and dT/dt

being known, we determine C0 at these temperatures and then we are able to determine the



1718 J M Martı́n-Olalla et al

303 304 305
T/K

50

60

70

80

φ/mWmol-1 21

23

c/R

303 305T/K

0

20

∆φ/mWmol-1

303 305T/K

Figure 1. The measured heat flux (•) and the background contribution (◦) deduced from specific
heat data in the neighbourhood of the normal–incommensurate phase transition. The specific
heat—see the upper-right inset—was measured in the same calorimeter on the same sample. The
heat capacity contribution (see equation (1)) matches with the measured heat flux. The bottom-left
inset shows the deviation of the heat flow from the background; the scale of the inset is that of
figure 2. Data are randomly placed around the zero point. Thus, no latent heat is observed within
experimental resolution in agreement with the 3d XY universality class of this phase transition.
The error bar represents ±1 mW mol−1.

C0-dependency with respect to temperature, as it is certainly a smooth function of temperature
and should be assumed to be linear. C0 being known, and using values for the specific heat
measured in the transition, φ0 can be calculated as a function of temperature by again invoking
equation (1). This function represents the enthalpy variation due to excess specific heat and
is represented in figure 1 by a line of open circles. As can be seen, the measured heat flow
and what is expected due to excess specific heat are exact matches in form and value. The
deviation (�φ) is shown in the bottom-left inset: their maximum is less than 1 mW mol−1

and it is randomly greater and less than zero. Therefore the only contribution to the transition
enthalpy is excess specific heat, and the resulting latent heat is zero (within the equipment’s
resolution). This is the result to be expected for this transition which belongs in universality
class 3d XY .

In figure 2 the same analysis is shown, but near the commensurate–incommensurate phase
transition. The measured heat flow, φ, which includes contributions from the latent heat and
specific heat, is represented by full circles. The heat flow φ0, calculated from specific heat data,
is represented by open circles. In the upper-right inset we show the �φ data. In the present
case, the maximum deviation is 13 mW mol−1 and a peak is seen at the commensurate–
incommensurate phase transition. Thus, our data show that the enthalpy variation cannot be
explained solely by means of the specific heat contribution and, therefore, show the presence
of latent heat. The integral of equation (2) is evaluated for Q = 2.3 J mol−1. The transition
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Figure 2. As figure 1, but for the commensurate–incommensurate phase transition. The • stand
for the measured heat flow while the ◦ are used for the deduced background contribution. The
specific heat is that of reference [9]. The error bar represents ±1 mW mol−1. The inset shows
their differences. The latent heat peak (�φ), representing phase coexistence, is only 0.2 K wide.
The �φ maximum is 13 mW mol−1 and the peak area is 2.3 J mol−1.

entropy is then 1.4×10−3R which is much less than the order–disorder entropy R log(2). Also
significant is the apparent double peak, which cannot be interpreted in terms of the specific heat
anomaly: to our knowledge there is no other evidence of such a phenomenon in specific heat
measurements for the commensurate–incommensurate phase of Rb2ZnCl4. A comprehensive
study of this shoulder lies outside of the scope of this paper; it could be due to some kinetic
process in the transition, a microscopic feature of the transition or a new extremely unstable
incommensurate phase.

4. Discussion

The greatest difficulty in identifying the latent heat with the peak zone in figure 2 lies in the
peak’s width. Ideally, latent heat would be observed only at a single temperature and the
peak should tend towards a Dirac delta function if represented as a function of temperature
(as a function of time it would always be of finite width); even then a width of some 0.2 K is
observed. In this regard it should be noted that given dT/dt = 2 K h−1, the 0.2 K span means
a six-minute interval, which is of the order of magnitude of the relaxation of the calorimeter.
While we have explained the peak’s width, the shape of the anomaly, with its double peak, is
quite different from that expected of a specific heat anomaly, so this area represents a close
approximation of the transition latent heat value and, at any rate, proof of its existence. Of
course, the specific heat data may be affected, to some extent, by the existence of latent heat,
but the difference between figure 1 and figure 2 is significant.
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On the other hand, the difficulty in distinguishing latent heat from transition enthalpy—
which includes latent heat and the integral of the specific heat with respect to temperature—
for this type of compound has barred rigorous analysis of the specific heat anomaly for this
transition. Previously [9], specific heat in the domain-like zone was studied in cases where
there was an expectation that domain walls would interact with a repulsion potential. Under
these conditions the result obtained was that the specific heat diverged in accordance with
(T − Tic)

−1, as verified experimentally. Moreover, it became obvious that the contribution to
the transition enthalpy made by this specific heat was significant and that latent heat could not
be regarded as being the same as transition enthalpy. Analysing this divergence, the conclusion
was that the latent heat should be, at most, 3 J mol−1.

From a theoretical point of view, in order to study the commensurate–incommensurate
phase transition discontinuity one must get away from the domain-like regime and introduce
an attraction term into the system’s thermodynamic potential. On doing this, and following
the notation of reference [9], the latent heat is obtained as

Q = Tloc

P 2
s

C2

(
ln

a2/a1

2(Tic − Tloc)

)−1

(3)

where Ps is spontaneous polarization at the transition temperature, C2 is Curie’s constant
for permittivity, Tic is the temperature at which domain formation becomes favourable, Tloc

is the temperature at which the phase transition actually occurs and a1, a2 are coefficients
of the thermodynamic potential (to be considered constants). Thermodynamic theory for the
incommensurate phase allows the relating of the logarithm in equation (3) with the wave vector
in the incommensurate phase. This gives [2, 9]

Q = 2

π
Tloc

P 2
s

C2

qloc

q0
(4)

where qloc is the wave vector at the transition temperature and q0 is the value of the wave vector
during the formation of the incommensurate phase.

For this sample, 4πC2 = 68 K, whilst the values of Ps and qloc have been studied in a
multitude of references. Their values are 0.11–0.13 µC cm−2 for spontaneous polarization
and between 1

2 and 1
6 for qloc/q0 [10–12]. With these data, the latent heat in the transition

calculated in equation (4) has a value of 2–6 J mol−1 depending on whether 1
6 or 1

2 is used for
qloc/q0. The value obtained experimentally (Q = 2.3 J mol−1) agrees in order of magnitude
with that calculated for expression (4) and seems to suggest that qloc/q0 is nearer 1

6 than 1
2 .

An order-of-magnitude analysis can be made relating the thermal and dielectric properties
of the commensurate–incommensurate transition. The specific heat diverges [9], in the zone
of the domain-like regime, in the form of (T − Tic)

−1and the ratio of proportionality of the
law is

C1 = Tic

P 2
s

C2

(
ln

a2/a1

T1 − Tic

)−2

(5)

which is similar to expression (3) except that the temperatures appearing in the logarithm differ:
T1 is an intermediate temperature of the interval wherein the law of divergence of the specific
heat is operative. However, we can assume that the orders of magnitude of the logarithms in
equations (3) and (5) are similar; thus the order of magnitude is

Tic

C2

C1P
2
s

Q2
∼ 1. (6)

Using the value [9] C1 = 0.158 J mol−1, the expression on the left in equation (6) gives
a value of 1.5–1.7. This result corroborates the validity of the values for Q and C1. We wish
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to emphasize that in the analysis of this expression all of the experimental data have been
obtained for the same sample, except for those relating to the spontaneous polarization.

Of further difficulty is the comparison of the latent heat with the expression derived from
the Clausius equation:

dTloc

dE
= −TlocPs

Q
. (7)

The value obtained from our data is
dTloc

dE
∼ 1.3 K cm V−1 (8)

whereas the measurements by Fousek and Kroupa [16] produce a value of 0.50 K cm kV−1.
Nevertheless, these measurements were made on a crystal of lower quality than that used in
the present experiment, which could account for the difference.

5. Conclusions

The question of whether commensurate–incommensurate phase transitions are discontinuous
or continuous has impeded a lot of discussion both theoretically and experimentally. Although
it has been widely stated that, experimentally, they are found to be discontinuous, and some
theoretical papers have also supported this point of view (see for instance references [6]
and [7]), there has been no experimental evidence found of latent heat in the phase transitions.
Our experiments have been carried out on the same sample, and by comparing the normal–
incommensurate phase transition and the commensurate–incommensurate phase transition in
Rb2ZnCl4 we can conclude that latent heat exists and give a reasonable value, for the first time.
As previously expected [9], the transition entropy is much less than the order–disorder limit.
This low value explains why it is difficult to observe. Anyway, the value agrees in order of
magnitude with a phenomenological theory which takes into account domain wall interactions.

On the other hand, our data show a new feature of the phase transition: the shoulder shown
in figure 2. The study of macroscopic quantities such as thermal properties reveals to us its
origin. However, previously reported data on specific heat [9,14,21] have not revealed a kink
or shoulder at this point. New microscopic experiments will be welcome, but these lie, at
present, beyond our capabilities.
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